Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.818
Filtrar
1.
Science ; 384(6691): eabo7027, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574142

RESUMO

Macrophages are functionally heterogeneous cells essential for apoptotic cell clearance. Apoptotic cells are defined by homogeneous characteristics, ignoring their original cell lineage identity. We found that in an interleukin-4 (IL-4)-enriched environment, the sensing of apoptotic neutrophils by macrophages triggered their tissue remodeling signature. Engulfment of apoptotic hepatocytes promoted a tolerogenic phenotype, whereas phagocytosis of T cells had little effect on IL-4-induced gene expression. In a mouse model of parasite-induced pathology, the transfer of macrophages conditioned with IL-4 and apoptotic neutrophils promoted parasitic egg clearance. Knockout of phagocytic receptors required for the uptake of apoptotic neutrophils and partially T cells, but not hepatocytes, exacerbated helminth infection. These findings suggest that the identity of apoptotic cells may contribute to the development of distinct IL-4-driven immune programs in macrophages.


Assuntos
Apoptose , Interleucina-4 , Macrófagos , Fagocitose , Esquistossomose mansoni , Animais , Camundongos , Apoptose/imunologia , Interleucina-4/genética , Interleucina-4/metabolismo , Macrófagos/imunologia , Camundongos Knockout , Neutrófilos/imunologia , Fagocitose/imunologia , Hepatócitos/imunologia , Esquistossomose mansoni/genética , Esquistossomose mansoni/imunologia
2.
Exp Mol Med ; 55(1): 215-227, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36635431

RESUMO

Conflicting results on melatonin synthesis in multiple sclerosis (MS) have been reported due to variabilities in patient lifestyles, which are not considered when supplementing melatonin. Since melatonin acts through its receptors, we identified melatonin receptors in oligodendrocytes (OLs) in the corpus callosum, where demyelination occurs; the subventricular zone, where neural stem/progenitor cells (NSPCs) are located; and the choroid plexus, which functions as a blood-cerebrospinal fluid barrier. Moreover, using chimeric mice, resident macrophages were found to express melatonin receptors, whereas bone marrow-derived macrophages lost this expression in the demyelinated brain. Next, we showed that cuprizone-fed mice, which is an MS model, tended to have increased melatonin levels. While we used different approaches to alter the circadian rhythm of melatonin and cortisol, only the constant light approach increased NSPC proliferation and differentiation to oligodendrocyte precursor cells (OPCs), OPCs maturation to OLs and recruitment to the site of demyelination, the number of patrolling monocytes, and phagocytosis. In contrast, constant darkness and exogenous melatonin exacerbated these events and amplified monocyte infiltration. Therefore, melatonin should not be considered a universal remedy, as is currently claimed. Our data emphasize the importance of monitoring melatonin/cortisol oscillations in each MS patient by considering diet and lifestyle to avoid melatonin overdose.


Assuntos
Doenças Desmielinizantes , Melatonina , Monócitos , Esclerose Múltipla , Bainha de Mielina , Fagocitose , Animais , Camundongos , Diferenciação Celular , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Hidrocortisona , Melatonina/farmacologia , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Fagocitose/imunologia , Receptores de Melatonina , Bainha de Mielina/metabolismo
3.
Nat Commun ; 13(1): 662, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115533

RESUMO

Increasingly, antibodies are being used to treat and prevent viral infections. In the context of HIV, efficacy is primarily attributed to dose-dependent neutralization potency and to a lesser extent Fc-mediated effector functions. It remains unclear whether augmenting effector functions of broadly neutralizing antibodies (bNAbs) may improve their clinical potential. Here, we use bNAb 10E8v4 targeting the membrane external proximal region (MPER) to examine the role of antibody-mediated effector and complement (C') activity when administered prophylactically against SHIV challenge in rhesus macaques. With sub-protective dosing, we find a 78-88% reduction in post-acute viremia that is associated with 10E8v4-mediated phagocytosis acting at the time of challenge. Neither plasma nor tissue viremic outcomes in vivo is improved with an Fc-modified variant of 10E8v4 enhanced for C' functions as determined in vitro. These results suggest that effector functions inherent to unmodified 10E8v4 contribute to efficacy against SHIVSF162P3 in the absence of plasma neutralizing titers, while C' functions are dispensable in this setting, informing design of bNAb modifications for improving protective efficacy.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Proteínas do Sistema Complemento/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Fagocitose/imunologia , Viremia/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Amplamente Neutralizantes/farmacologia , Linhagem Celular Tumoral , Proteínas do Sistema Complemento/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Anticorpos Anti-HIV/metabolismo , Anticorpos Anti-HIV/farmacologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Macaca mulatta , Masculino , Fagocitose/efeitos dos fármacos , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Viremia/sangue , Viremia/prevenção & controle
4.
Front Immunol ; 13: 762080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35145518

RESUMO

Leishmania spp. infection outcomes are dependent on both host and parasite factors. Manipulation of host signaling pathways involved in the generation of immune responses is thought to be one of the most common mechanisms used by parasites for persistence within the host. Considering the diversity of pathologies caused by different Leishmania spp., it is plausible that significant differences may exist in the mechanisms of host cell manipulation by each parasite species, which may have implications when developing new vaccine or treatment strategies. Here we show that in L. braziliensis-infection in BALB/c mice, a model of resistance, activation of ERK1/2 coincides with the peak of inflammatory responses and resolution of tissue parasitism. In contrast, in the susceptibility model of L. amazonensis-infection, an early silent phase of infection is observed, detected solely by quantification of parasite loads. At this early stage, only basal levels of P-ERK1/2 are observed. Later, after a brief shutdown of ERK1/2 phosphorylation, disease progression is observed and is associated with increased inflammation, lesion size and tissue parasitism. Moreover, the short-term down-regulation of ERK1/2 activation affected significantly downstream inflammatory pathways and adaptive T cell responses. Administration of U0126, a MEK/ERK inhibitor, confirmed this phenomenon, since bigger lesions and higher parasite loads were seen in infected mice that received U0126. To investigate how kinetics of ERK1/2 activation could affect the disease progression, U0126 was administered to L. amazonensis-infected animals earlier than the P-ERK1/2 switch off time-point. This intervention resulted in anticipation of the same effects on inflammatory responses and susceptibility phenotype seen in the natural course of infection. Additionally, in vitro inhibition of ERK1/2 affected the phagocytosis of L. amazonensis by BMDMs. Collectively, our findings reveal distinct temporal patterns of activation of inflammatory responses in L. braziliensis and L. amazonensis in the same animal background and a pivotal role for a brief and specific shutdown of ERK1/2 activation at late stages of L. amazonensis infection. Since activation of inflammatory responses is a crucial aspect for the control of infectious processes, these findings may be important for the search of new and specific strategies of vaccines and treatment for tegumentary leishmaniasis.


Assuntos
Imunidade Celular , Leishmania mexicana/imunologia , Leishmaniose/imunologia , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Interações Hospedeiro-Patógeno/imunologia , Mediadores da Inflamação/metabolismo , Leishmaniose/patologia , Camundongos , Carga Parasitária , Fagocitose/imunologia , Fosforilação , Transdução de Sinais
5.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35110413

RESUMO

Changes in population density lead to phenotypic differentiation of solitary and gregarious locusts, which display different resistance to fungal pathogens; however, how to regulate their cellular immune strategies remains unknown. Here, our stochastic simulation of pathogen proliferation suggested that humoral defense always enhanced resistance to fungal pathogens, while phagocytosis sometimes reduced defense against pathogens. Further experimental data proved that gregarious locusts had significantly decreased phagocytosis of hemocytes compared to solitary locusts. Additionally, transcriptional analysis showed that gregarious locusts promoted immune effector expression (gnbp1 and dfp) and reduced phagocytic gene expression (eater) and the cytokine tumor necrosis factor (TNF). Interestingly, higher expression of the cytokine TNF in solitary locusts simultaneously promoted eater expression and inhibited gnbp1 and dfp expression. Moreover, inhibition of TNF increased the survival of solitary locusts, and injection of TNF decreased the survival of gregarious locusts after fungal infection. Therefore, our results indicate that the alerted expression of TNF regulated the immune strategy of locusts to adapt to environmental changes.


Assuntos
Gafanhotos/imunologia , Gafanhotos/microbiologia , Imunidade Celular/imunologia , Metarhizium/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Expressão Gênica/imunologia , Fagocitose/imunologia , Densidade Demográfica , Transcrição Gênica/imunologia
6.
J Neuroimmunol ; 363: 577801, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973473

RESUMO

Huntington's disease (HD) is a late-onset; progressive, dominantly inherited neurological disorder marked by an abnormal expansion of polyglutamine (poly Q) repeats in Huntingtin (HTT) protein. The pathological effects of mutant Huntingtin (mHTT) are not restricted to the nervous system but systemic abnormalities including immune dysregulation have been evidenced in clinical and experimental settings of HD. Indeed, mHTT is ubiquitously expressed and could induce cellular toxicity by directly acting on immune cells. However, it is still unclear if selective expression of mHTT exon1 in neurons could induce immune responses and hemocytes' function. In the present study, we intended to monitor perturbations in the hemocytes' population and their physiological functions in Drosophila, caused by pan-neuronal expression of mHTT protein. A measure of hemocyte count and their physiological activities caused by pan-neuronal expression of mHTT protein highlighted the extent of immune dysregulation occurring with disease progression. We found that pan-neuronal expression of mHTT significantly alters crystal cells and plasmatocyte count in larvae and adults with disease progression. Interestingly, plasmatocytes isolated from diseased conditions exhibit a gradual decline in phagocytic activity ex vivo at progressive stages of the disease as compared to age-matched control groups. In addition, diseased flies displayed elevated reactive oxygen species (ROS) in circulating plasmatocytes at the larval stage and in sessile plasmatocytes of hematopoietic pockets at terminal stages of disease. These findings strongly implicate that neuronal expression of mHTT alone is sufficient to induce non-cell-autonomous immune dysregulation in vivo.


Assuntos
Hemócitos/imunologia , Proteína Huntingtina/genética , Doença de Huntington/imunologia , Fagocitose/imunologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila melanogaster , Humanos , Mutação , Neurônios/metabolismo
7.
J Immunol ; 208(3): 660-671, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022276

RESUMO

Invasive candidiasis has high mortality rates in immunocompromised patients, causing serious health problems. In mouse models, innate immunity protects the host by rapidly mobilizing a variety of resistance and tolerance mechanisms to systemic Candida albicans infection. We have previously demonstrated that exogenous IL-33 regulates multiple steps of innate immunity involving resistance and tolerance processes. In this study, we systematically analyzed the in vivo functions of endogenous IL-33 using Il33 -/- mice and in vitro immune cell culture. Tubular epithelial cells mainly secreted IL-33 in response to systemic C. albicans infection. Il33 -/- mice showed increased mortality and morbidity, which were due to impaired fungal clearance. IL-33 initiated an innate defense mechanism by costimulating dendritic cells to produce IL-23 after systemic C. albicans infection, which in turn promoted the phagocytosis of neutrophils through secretion of GM-CSF by NK cells. The susceptibility of Il33 -/- mice was also associated with increased levels of IL-10, and neutralization of IL-10 resulted in enhanced fungal clearance in Il33 -/- mice. However, depletion of IL-10 overrode the effect of IL-33 on fungal clearance. In Il10 -/- mouse kidneys, MHC class II+F4/80+ macrophages were massively differentiated after C. albicans infection, and these cells were superior to MHC class II-F4/80+ macrophages that were preferentially differentiated in wild-type mouse kidneys in killing of extracellular hyphal C. albicans Taken together, our results identify IL-33 as critical early regulator controlling a serial downstream signaling events of innate defense to C. albicans infection.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Imunidade Inata/imunologia , Interleucina-10/metabolismo , Subunidade p19 da Interleucina-23/metabolismo , Interleucina-33/imunologia , Animais , Candidíase/microbiologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Hospedeiro Imunocomprometido/imunologia , Interleucina-10/genética , Interleucina-33/genética , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Fagocitose/imunologia , Transdução de Sinais/imunologia
8.
Dev Comp Immunol ; 129: 104348, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35026231

RESUMO

Matrix metalloproteinases (MMPs) are highly expressed in leukocytes and macrophages, which play a role in the innate immune response. Here, the cDNA sequence of MMP25 from Japanese sea bass (Lateolabrax japonicus) (LjMMP25) was identified. Phylogenetic analysis revealed that LjMMP25 was most closely related to large yellow croaker MMP25. Multiple sequence alignment of LjMMP25 with MMP25 sequences from other teleosts revealed that regions of known functional importance were highly conserved. Expression analysis revealed that LjMMP25 was highly expressed in the head kidney and widely expressed in other tissues including gill, spleen, and liver. LjMMP25 was found to regulate inflammatory cytokine production and promote phagocytosis and bacterial killing in monocytes/macrophages (MO/MФ). Furthermore, LjMMP25 regulated the inflammatory response by modulating NF-κB signaling. These findings reveal new information about the role of LjMMP25 in regulating pro-inflammatory responses in this species.


Assuntos
Bass/genética , Sequência de Aminoácidos , Animais , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas Ligadas por GPI , Imunidade Inata/genética , Leucócitos , Fígado , Macrófagos/imunologia , Metaloproteinases da Matriz Associadas à Membrana , Monócitos/imunologia , Fagocitose/imunologia , Filogenia , Alinhamento de Sequência , Vibrioses/imunologia
9.
Cell Rep ; 38(1): 110183, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986357

RESUMO

Candida albicans is a commensal of the urogenital tract and the predominant cause of vulvovaginal candidiasis (VVC). Factors that increase circulatory estrogen levels such as pregnancy, the use of oral contraceptives, and hormone replacement therapy predispose women to VVC, but the reasons for this are largely unknown. Here, we investigate how adaptation of C. albicans to estrogen impacts the fungal host-pathogen interaction. Estrogen promotes fungal virulence by enabling C. albicans to avoid the actions of the innate immune system. Estrogen-induced innate immune evasion is mediated via inhibition of opsonophagocytosis through enhanced acquisition of the human complement regulatory protein, Factor H, on the fungal cell surface. Estrogen-induced accumulation of Factor H is dependent on the fungal cell surface protein Gpd2. The discovery of this hormone-sensing pathway might pave the way in explaining gender biases associated with fungal infections and may provide an alternative approach to improving women's health.


Assuntos
Candida albicans/imunologia , Candidíase Vulvovaginal/patologia , Via Alternativa do Complemento/imunologia , Estrogênios/metabolismo , Evasão da Resposta Imune/imunologia , Fagocitose/imunologia , Candida albicans/patogenicidade , Fator H do Complemento/metabolismo , Feminino , Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Humanos , Imunidade Inata/imunologia , Progesterona/metabolismo , Virulência/imunologia
10.
Sci Immunol ; 7(67): eabj5501, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35061505

RESUMO

The interaction of SIRPα with CD47 represents a major mechanism for preventing macrophage phagocytosis. However, CD47-independent mechanisms are poorly defined. Here, we report a critical role of SLAM family receptors (SFRs), ubiquitously expressed on hematopoietic cells and forming homotypic interactions, in constraining macrophage phagocytosis. We found that SFR deficiency triggered macrophage phagocytosis of hematopoietic cells, leading to severe rejection of donor hematopoietic graft in recipient mice. Specific SFR members, mainly SLAMF3 and SLAMF4, were identified as "don't eat me" receptors on macrophages. These receptors inhibited "eat me" signals, such as LRP1-mediated activation of mTOR and Syk, through SH2 domain-containing phosphatases. SFRs combined with, but were independent of, CD47 to mitigate macrophage phagocytosis, and the combined deletion of SFRs and CD47 resulted in hematopoietic cytopenia in mice. This SFR-mediated tolerance was compromised in patients with hemophagocytic lymphohistiocytosis, a syndrome characterized by inappropriate phagocytosis toward hematopoietic cells. Loss of SFRs potently elicited macrophage rejection of hematopoietic tumors. Deletion of SFRs also significantly enhanced the phagocytosis of CD19-positive hematopoietic targets by the macrophages expressing the chimeric CD19 antigen receptor. Therefore, SFR-mediated inhibition of macrophage phagocytosis is critical to hematopoietic homeostasis, and SFRs may represent previously unknown targets for tumor immunotherapy.


Assuntos
Neoplasias Hematológicas/imunologia , Proteínas de Checkpoint Imunológico/imunologia , Macrófagos/imunologia , Fagocitose/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Animais , Linhagem Celular , Neoplasias Hematológicas/patologia , Humanos , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
11.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058363

RESUMO

Gram-positive organisms with their thick envelope cannot be lysed by complement alone. Nonetheless, antibody-binding on the surface can recruit complement and mark these invaders for uptake and killing by phagocytes, a process known as opsonophagocytosis. The crystallizable fragment of immunoglobulins (Fcγ) is key for complement recruitment. The cell surface of S. aureus is coated with Staphylococcal protein A (SpA). SpA captures the Fcγ domain of IgG and interferes with opsonization by anti-S. aureus antibodies. In principle, the Fcγ domain of therapeutic antibodies could be engineered to avoid the inhibitory activity of SpA. However, the SpA-binding site on Fcγ overlaps with that of the neonatal Fc receptor (FcRn), an interaction that is critical for prolonging the half-life of serum IgG. This evolutionary adaptation poses a challenge for the exploration of Fcγ mutants that can both weaken SpA-IgG interactions and retain stability. Here, we use both wild-type and transgenic human FcRn mice to identify antibodies with enhanced half-life and increased opsonophagocytic killing in models of S. aureus infection and demonstrate that antibody-based immunotherapy can be improved by modifying Fcγ. Our experiments also show that by competing for FcRn-binding, staphylococci effectively reduce the half-life of antibodies during infection. These observations may have profound impact in treating cancer, autoimmune, and asthma patients colonized or infected with S. aureus and undergoing monoclonal antibody treatment.


Assuntos
Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Opsonização/imunologia , Engenharia de Proteínas , Sequência de Aminoácidos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Ativação do Complemento , Relação Dose-Resposta a Droga , Relação Dose-Resposta Imunológica , Humanos , Fagocitose/imunologia , Ligação Proteica , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/imunologia , Receptores Fc/genética , Proteína Estafilocócica A/imunologia , Staphylococcus aureus/imunologia
12.
J Immunol ; 208(4): 955-967, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35082161

RESUMO

Deficiency in the clearance of cellular debris is a major pathogenic factor in the emergence of autoimmune diseases. We previously demonstrated that mice deficient for scavenger receptor class F member 1 (SCARF1) develop a lupus-like autoimmune disease with symptoms similar to human systemic lupus erythematosus (SLE), including a pronounced accumulation of apoptotic cells (ACs). Therefore, we hypothesized that SCARF1 will be important for clearance of ACs and maintenance of self-tolerance in humans, and that dysregulation of this process could contribute to SLE. In this article, we show that SCARF1 is highly expressed on phagocytic cells, where it functions as an efferocytosis receptor. In healthy individuals, we discovered that engagement of SCARF1 by ACs on BDCA1+ dendritic cells initiates an IL-10 anti-inflammatory response mediated by the phosphorylation of STAT1 and STAT3. Unexpectedly, there was no significant difference in SCARF1 expression in samples of patients with SLE compared with healthy donor samples. However, we detected anti-SCARF1 autoantibodies in 26% of patients with SLE, which was associated with dsDNA Ab positivity. Furthermore, our data show a direct correlation of the levels of anti-SCARF1 in the serum and defects in the removal of ACs. Depletion of Ig restores efferocytosis in SLE serum, suggesting that defects in the removal of ACs are partially mediated by SCARF1 pathogenic autoantibodies. Our data demonstrate that human SCARF1 is an AC receptor in dendritic cells and plays a role in maintaining tolerance and homeostasis.


Assuntos
Autoanticorpos/imunologia , Imunomodulação , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Fagocitose/imunologia , Receptores Depuradores Classe F/genética , Animais , Autoanticorpos/sangue , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunomodulação/genética , Imunofenotipagem , Lúpus Eritematoso Sistêmico/diagnóstico , Camundongos , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fagócitos/imunologia , Fagócitos/metabolismo , Fosforilação , Fatores de Transcrição STAT/metabolismo , Receptores Depuradores Classe F/imunologia , Receptores Depuradores Classe F/metabolismo
13.
Tuberculosis (Edinb) ; 132: 102165, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35045376

RESUMO

Mycobacterium tuberculosis (MTB) and M. avium-intracellulare complex (MAC) enter host phagocytes, such as neutrophils through lipoarabinomannan (LAM) binding to pattern-recognition receptors, inducing innate immune responses including phagocytosis. Phagocytosis of mycobacteria by human neutrophils depends on the binding of α(1 â†’ 2)-monomannose branching α(1 â†’ 6)-mannan core of LAM/lipomannan (LM), a common component among mycobacterial species, to lactosylceramide (LacCer)-enriched lipid microdomains. We investigated the binding specificities of several anti-LAM antibodies (Abs) to LAMs/LM and found anti-LAM monoclonal IgMs TMDU3 and LA066 were directed against mannan core. Each IgM showed different binding specificity to mannan core. Confocal and stimulated emission depletion microscopy revealed TMDU3 and LA066 strongly bind to MTB and MAC, respectively. Flow cytometric analysis revealed human neutrophils do not express Dectin-2, DC-SIGN or mannose receptor. Furthermore, neutrophil phagocytosis of mycobacteria was markedly inhibited by TMDU3 and LA066, respectively. Similarly, treatment of each mAb with neutrophils reduced the numbers of intracellular MAC. Together, our results suggest that the interaction of LacCer-enriched lipid microdomains with mannan core and its blocking are therapeutic or diagnostic targets for both TB and non-tuberculous mycobacteria infection.


Assuntos
Lipopolissacarídeos/imunologia , Mananas/metabolismo , Mycobacterium/metabolismo , Neutrófilos/imunologia , Fagocitose/imunologia , Adulto , Humanos , Lipopolissacarídeos/análise , Masculino , Pessoa de Meia-Idade , Mycobacterium/imunologia , Neutrófilos/metabolismo , Fagocitose/genética
14.
Front Immunol ; 13: 909932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591220

RESUMO

Introduction: Tumor microenvironment (TME) has been shown to be extensively involved in tumor development. However, the dynamic change of TME components and their effects are still unclear. Here, we attempted to identify TME-related genes that could help predict survival and may be potential therapeutic targets. Methods: Data was collected from UCSC Xena and GEO database. ESTIMATE and CIBERSORT algorithms were applied to estimate the components and the proportions of TIICs in TME. We analyzed the gene expression differences of immune components and stromal components, respectively, and finally got the overlapped DEGs. Through protein-protein interaction (PPI) network and univariate Cox regression analysis based on shared DEGs, we screened out and validated the TME-related genes. Focusing on this gene, we analyzed the expression and prognostic value of this gene, and investigated its relationship with immune cells by correlation analysis, single cell analysis, immunohistochemistry and immunofluorescence analysis. Results: Through a series analysis, we found that the proportion of immune and stromal components was an important prognostic factor, and screened out a key gene, LPAR5, which was highly correlated with prognosis and metastasis. And the expression of LPAR5 was positively correlated with immune cells, especially macrophages, indicating LPAR5+ macrophages played an important role in tumor microenvironment of osteosarcoma. Meanwhile, the genes in LPAR5 high expression group were enriched in immune-related activities and pathways, and differentially expressed genes between LPAR5+ macrophages and LPAR5- macrophages were enriched in the biological processes associated with phagocytosis and antigen presentation. What' more, we found that LPAR5 was mainly expressed in TME, and high LPAR5 expression predicting a better prognosis. Conclusion: We identified a TME-related gene, LPAR5, which is a promising indicator for TME remodeling in osteosarcoma. Particularly, LPAR5+ macrophages might have great potential to be a prognostic factor and therapeutic target for osteosarcoma.


Assuntos
Neoplasias Ósseas , Macrófagos , Osteossarcoma , Receptores de Ácidos Lisofosfatídicos , Microambiente Tumoral , Humanos , Neoplasias Ósseas/genética , Neoplasias Ósseas/imunologia , Macrófagos/imunologia , Osteossarcoma/genética , Osteossarcoma/imunologia , Fagocitose/genética , Fagocitose/imunologia , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Prognóstico , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia
15.
Chem Biol Interact ; 352: 109776, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34906553

RESUMO

Boosting or suppressing our immune system represents an attractive adjunct in the treatment of infections including SARS-CoV-2, cancer, AIDS, malnutrition, age related problems and some inflammatory disorders. Thus, there has been a growing interest in exploring and developing novel drugs, natural or synthetic, that can manipulate our defence mechanism. Many of such studies, reported till date, have been designed to explore effect of the therapeutic on function of macrophages, being a key component in innate immune system. Indeed, RAW264.7, J774A.1, THP-1 and U937 cell lines act as ideal model systems for preliminary investigation and selection of dose for in vivo studies. Several bioassays have been standardized so far where many techniques require high throughput instruments, cost effective reagents and technical assistance that may hinder many scholars to perform a method demanding compilation of available protocols. In this review, we have taken an attempt for the first time to congregate commonly used in vitro immune-modulating techniques explaining their principles. The study detected that among about 40 different assays and more than 150 sets of primers, the methods of cell proliferation by MTT, phagocytosis by neutral red, NO detection by Griess reaction and estimation of expression of TLRs, COX-2, iNOS, TNF-α, IL-6 and IL-1ß by PCR have been the most widely used to screen the therapeutics under investigation.


Assuntos
Imunidade Inata/imunologia , Imunomodulação/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , Inflamação/imunologia , Fagocitose/imunologia
16.
Cell Immunol ; 371: 104449, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784560

RESUMO

Neutrophils are important cells in protection against microbial infections including visceral leishmaniasis (VL). It is well known that IL-32γ increases the protective T helper 17 cell mediated immune response against Leishmania infantum. Thus, in this study we evaluated whether IL-32 γ can increase the protective role of neutrophils against VL. In comparison with wild type (WT) mice, transgenic mice for human IL-32 γ (IL-32 γ Tg) presented a higher frequency and absolute number of neutrophils in both spleen and liver after the establishment of L. infantum infection. The IL-32 concentrations correlated with neutrophil numbers in the infected tissues. The IL-32 γ -induced recruitment of neutrophils was dependent on IL-17, since inhibition of Th17 T cells generation and IL-17 production with digoxin treatment reversed the effects of IL-32 γ. In murine neutrophils, the presence of IL-32 γ enhanced the phagocytosis of L. infantum via CR3. In addition, murine IL-32 γ Tg neutrophils were able to kill L. infantum due to the increased production of ROS when compared with WT neutrophils. In fact, IL-32 γ Tg mice lost their ability to control infection by L. infantum when neutrophils were depleted. In parallel, treatment of human neutrophils with recombinant IL-32 γ increased phagocytosis and ROS-dependent killing of L. infantum, similarly to murine IL-32 γ Tg neutrophils. The data show that IL-32 γ induces neutrophil recruitment to organs affected by VL and increases phagocytosis and killing of L. infantum by neutrophils. Together, data indicate the pivotal axis IL-32 γ -Th17-neutrophils to control VL.


Assuntos
Interleucinas/imunologia , Leishmania infantum/imunologia , Leishmaniose Visceral/imunologia , Neutrófilos/imunologia , Células Th17/imunologia , Animais , Interleucinas/genética , Fígado/citologia , Fígado/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infiltração de Neutrófilos/imunologia , Fagocitose/imunologia , Isoformas de Proteínas/genética , Espécies Reativas de Oxigênio/metabolismo , Baço/citologia , Baço/imunologia
17.
Infect Immun ; 90(1): e0051621, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34662214

RESUMO

Salmonella invades and disrupts gut epithelium integrity, creating an infection-generated electric field that can drive directional migration of macrophages, a process called galvanotaxis. Phagocytosis of bacteria reverses the direction of macrophage galvanotaxis, implicating a bioelectrical mechanism to initiate life-threatening disseminations. The force that drives direction reversal of macrophage galvanotaxis is not understood. One hypothesis is that Salmonella can alter the electrical properties of the macrophages by modifying host cell surface glycan composition, which is supported by the fact that cleavage of surface-exposed sialic acids with a bacterial neuraminidase severely impairs macrophage galvanotaxis, as well as phagocytosis. Here, we utilize N-glycan profiling by nanoLC-chip QTOF mass cytometry to characterize the bacterial neuraminidase-associated compositional shift of the macrophage glycocalyx, which revealed a decrease in sialylated and an increase in fucosylated and high mannose structures. The Salmonella nanH gene, encoding a putative neuraminidase, is required for invasion and internalization in a human colonic epithelial cell infection model. To determine whether NanH is required for the Salmonella infection-dependent direction reversal, we constructed and characterized a nanH deletion mutant and found that NanH is partially required for Salmonella infection in primary murine macrophages. However, compared to wild type Salmonella, infection with the nanH mutant only marginally reduced the cathode-oriented macrophage galvonotaxis, without canceling direction reversal. Together, these findings strongly suggest that while neuraminidase-mediated N-glycan modification impaired both macrophage phagocytosis and galvanotaxis, yet to be defined mechanisms other than NanH may play a more important role in bioelectrical control of macrophage trafficking, which potentially triggers dissemination.


Assuntos
Quimiotaxia de Leucócito/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Neuraminidase/metabolismo , Infecções por Salmonella/imunologia , Infecções por Salmonella/metabolismo , Salmonella/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Interações Hospedeiro-Patógeno/imunologia , Masculino , Camundongos , Modelos Biológicos , Mutação , Fagocitose/imunologia , Polissacarídeos/metabolismo , Infecções por Salmonella/microbiologia , Ácidos Siálicos/metabolismo , Virulência
18.
J Infect Dis ; 225(6): 938-946, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34693968

RESUMO

BACKGROUND: Although coronavirus disease 2019 (COVID-19) vaccinations have provided a significant reduction in infections, effective COVID-19 treatments remain an urgent need. METHODS: Functional characterization of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hyperimmune immunoglobulin (hIG) from human convalescent plasma was performed by different virus neutralization methodologies (plaque reduction, virus-induced cytotoxicity, median tissue culture infectious dose [TCID50] reduction, and immunofluorimetry) at different laboratories using geographically different SARS-CoV-2 isolates (USA [1], Italy [1], and Spain [2]; 2 containing the D614G mutation). Neutralization capacity against the original Wuhan SARS-CoV-2 strain and variants (D614G mutant, B.1.1.7, P.1, and B.1.351) was evaluated using a pseudovirus expressing the corresponding spike (S) protein. Antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) was also evaluated. RESULTS: All SARS-CoV-2 isolates were potently neutralized by hIG as shown by all 4 methodologies. Wild-type SARS-CoV-2 and variants were effectively neutralized using the pseudovirus. The hIG (IgG type) induced ADCC and ADCP against SARS-CoV-2 N and S proteins but not E protein. Very low concentrations (25-100 µg IgG/mL) were required. A potent effect was triggered by antibodies in hIG solutions against the SARS-CoV-2 S and N proteins. CONCLUSIONS: Beyond neutralization, IgG Fc-dependent pathways may play a role in combatting SARS-CoV-2 infections using COVID-19 hIG. This could be especially relevant for the treatment of more neutralization-resistant SARS-CoV-2 variants.


Assuntos
Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , COVID-19/sangue , COVID-19/terapia , Fagocitose/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Antivirais/sangue , COVID-19/imunologia , Humanos , Imunização Passiva , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Soroterapia para COVID-19
19.
J Virol ; 96(2): e0168921, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34730392

RESUMO

The low abundance of envelope spikes and the inability of IgG to aggregate virions render HIV-1 an inadequate target for antibody-mediated clearance by phagocytes. In an attempt to improve the ability of antibody to mediate the internalization of HIV-1 virions, we generated multimers of the broadly neutralizing HIV-1-specific monoclonal antibody (MAb) VRC01 using site-directed mutagenesis of the Fc segment. We then measured virion internalization using primary human monocytes and neutrophils. We found that, in the absence of complement, immune complexes consisting of HIV-1 virions and VRC01 multimers were slightly more efficiently internalized than were complexes formed with monomeric VRC01. The presence of complement, however, greatly augmented internalization of immune complexes formed with the multimeric MAb but had little impact on monomeric MAb-mediated internalization. Multimerization and the presence of complement overcome the limited ability of monomeric antibody to mediate internalization of HIV-1 virions and may thus provide a therapeutic approach to clearing virus. IMPORTANCE Antibody-mediated internalization of HIV-1 by phagocytes, a potential mechanism for clearing virus, is very inefficient. In an effort to improve viral clearance, we produced a multimeric form of the broadly neutralizing monoclonal antibody VRC01. We found that VRC01 antibody multimers (primarily hexamers) were only slightly more efficient in mediating HIV-1 internalization than was monomeric VRC01. However, the addition of complement resulted in substantially greater internalization of multimer-opsonized virus. In contrast, complement had little if any impact on internalization of monomer-opsonized virus. Therefore, antibody multimerization in combination with complement may overcome the limited ability of monomeric antibody to mediate internalization of HIV-1 virions. Our findings may provide a therapeutic approach to clearing virus.


Assuntos
Proteínas do Sistema Complemento/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Fagocitose/imunologia , Vírion/imunologia , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/genética , Complexo Antígeno-Anticorpo/imunologia , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/genética , Proteína gp41 do Envelope de HIV/imunologia , Humanos , Monócitos/imunologia , Mutação , Neutrófilos/imunologia , Multimerização Proteica , Receptores Fc/genética , Receptores Fc/imunologia
20.
J Cancer Res Clin Oncol ; 148(1): 1-14, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34609596

RESUMO

CD47, a transmembrane protein, acts as a "do not eat me" signal that is overexpressed in many tumor cell types, thereby forming a signaling axis with its ligand signal regulatory protein alpha (SIRPα) and enabling the tumor cells to escape from macrophage-mediated phagocytosis. Several clinical trials with CD47 targeting agents are underway and have achieved impressive results preliminarily. However, hematotoxicity (particularly anemia) has emerged as the most common side effect that cannot be neglected. In the development of CD47 targeting agents, various methods have been used to mitigate this toxicity. In this review, we summarized five strategies used to alleviate CD47 blockade-induced hematotoxicity, as follows: change in the mode of administration; dual targeting bispecific antibodies of CD47; CD47 antibodies/SIRPα fusion proteins with negligible red blood cell binding; anti-SIRPα antibodies; and glutaminyl-peptide cyclotransferase like inhibitors. With these strategies, the development of CD47 targeting agents can be improved.


Assuntos
Anemia/prevenção & controle , Antineoplásicos Imunológicos/efeitos adversos , Antígeno CD47/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias/tratamento farmacológico , Aminoaciltransferases/antagonistas & inibidores , Anemia/induzido quimicamente , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos de Diferenciação/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Antígeno CD47/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Macrófagos/imunologia , Neoplasias/patologia , Fagocitose/imunologia , Receptores Imunológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...